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SOLUTION THEOREMS IN PROBABILISTIC PROGRAMMING: 
A LINEAR PROGRAMMING APPROACH 

A. Charnes,*M. J. L. Kirby%nd W. M. Raike*** 

Introduction 

For some years research on solution theorems in probabilistic pro- 

gramming has been dormant. The obvious consequences of formal similar- 

ities to deterministic mathematical programming problems bad been rapidly 

exhausted by researchers. Currently, however, the deeper study which was 

taking place during the “dormant period” has begun to produce results. On the 

one hand theorems characterizing optimal classes of stochastic decision 

rules for various general chance-constrained problems have been obtained. 

(See [ll, 12, U]). On the other hand, a great amount of effort has been 

expended on the special class of problems called linear programming 

problems under uncertainty (Cf. [Z, 3,4,5,6,10,16,17,18]), usually 2-stage 

and under still more special assumptions. 

The general objective of these specializations has been to attain results 

and thereby to gain insight and technique to reapproach more fruitfully the 

more important and general but more recondite probabilistic programming 

problems. To this end, few abstractions or devices, from finite-dimensional 

Banach spaces ( [3]) to the Kakutani fixed-point theorem ([5]) appear to have 

gone untried, except, perhaps, the ancient one of study and correlation of 

the existent results of other researchers. 

It is the purpose of this paper to provide some such correlation and a 

redirection so that these simpler probabilistic programming problems may be 

overcome in all generality with aew,simpler methods which offer some pro- - 

miee of extension to the more involved chance-constrained (and other 

*Northwestern University 
**Dalhousie University 
*** University of Texas and Northwestern University 
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probabilistic) models. In so doing, we have been able to obtain significant 

extensions of past results as well as other new results which exhibit the 

power of this “Heseenberg” (here linear programming) as opposed to the 

11 previous “Kleinian” - approach. 

Notation and Problem Statement 

We begin with the 2-stage linear programming under uncertainty 

problem, which we write as follows: Determine, if they exist, a vector x1 

and a vector function x (b 2 2 ) which minimize 

(1) clxl + Ec2x2 b2) 

subject to Allxl z bl 

Azlxl + A22x2(b2) q b2 

x1.x2(b2) 20 

Jn (1) , cl, c2 and bl are vectors of known constants, All, A 
21 

and A 
22 are 

known constant matrices, and b2 is a vector of random variables with a 

known joint distribution function, The E operator denotes expectation, 

and the constraints involving x2 (b2) are required to hold with probability 

one. Juxtaposition of vectors or matrices indicates an inner product or 

matrix multiplication; whether vectors are to be row or column vectors 

II “JSle~” = elementary mathematics from a higher standpoint; “Hessenberg” = 
higher mathematics from an elementary standpoint. 



will be clear from context. When needed, a superscript T will denote 

transposition, and for a vector y we will use [y 1 to represent 

( !YJ”.. s !y,] ); a norm of y will be written !ly 11 . It is a fundamental 

assumption of L p. u. u. , which we dub for convenience the “consistency” 

assumption, that for any xl z 0 satisfying Allxl = bl , there is an x2(b2) 

satisfying the “second stage” constraints with probability one. To conform 

to past definitions (3) we specify the domain of definition of x2 to be Do , 

the convex hull of those subsets of Euclidean m-space which are assigned 

positive measure by the distribution of b2. 

To orient (1) in the framework of chance-constrained programming 

we note that the system Allxl = bl may be considered to arise as the 

deterministic equivalent of chance constraints in which xl is to be chosen 

as a zero-order, or constant, decision rule. 

Alternative Formulations 

In [l] and later in [7], Charnes, Cooper and Thompson showed that 

(1) could be reduced to a deterministic “constrained hypermedian” problem 

involving xl alone, with “constrained medians” as the most important 

special type. The constrained hypermedian problem obtained there, which 

is equivalent to (l), is: 

(2) minimize (cl - c2AZ2 2l 1 # A lx + E [: s=y,:, ,K w~(A;~(A~~“~ - b2)) 3 

subject to A11xl = bl 
x 20 1 

# 11 In (2), A22 is a generalized inverse of A22 - and the vectors ws are 

I’ For the definition of a von Neumann-Rao generalized inverse and a summary 
of some of its properties see [8] and [9]. 
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the K extreme points of the convex polyhedral set defined by the constraints 

WP q c2P 

wzo, 

where the matrix P q I - AZ2 #A 22 is the projection onto the null space of A22 . 

The computational (not theoretical) usefulness of (2) may be limited, since 

one might well require an enumeration of all the ws , There are, however, 

a number of cases in which such an enumeration is not required. 

A case of particular importance for economic theory (and also 

possibly for solution approximations in more general situations) is that in 

which, a priori, a linear programming problem for the first-stage gives an 

optimal solution to the 2-stage problem. We present a simple sufficient 

condition for this as the following theorem. 

Theorem 0: If c2 is in the range of the transpose of A22 (i. e., if 

CA # 2 22 = c2 , so that c2 is a linear combination of the rows of A 22) then an 

optimal x1 can be found by solving the linear programming problem 



(3) minimize (cl - c2AZ2 2l xl + const. (=Ec2A22 2 #A) # b) 

subject to All”1 = bl 

x1 5 0 

Proof: Since c2A22 #A # 22 = c2 we have c2x2(b2) = c2A22 22 2 2 A, x(b),so 

the second stage constraints imply that for’& feasible x2(b2) (and we have 

assumed that one exists) c2x2(b2) = c2Ai2 (b2 - A21xl). Taking expectations 

shows that the functional in (1) becomes that of (3). and the consistency assump- 

tion means that the second-stage constraints in (1) are redundant. 

This is clearly one case in which no enumeration of extreme points is 

required, for (2) simply reduces to (3). Also, the theorem is particularly 

interesting when A22 is specialized to be square and nonsingular; it is 

then a simplification of previous results, (See [3], for instance. ) 

Another important such case is the “constrained median” type, which 

we render here as 

(4) minimize ~1x1 t (y E j b2 - A21xl ) 

subject to Allxl = bl 

X120 . 

It can be assumed’with no loss of generality that, in (4). o. > 0. We shall 

always assume.both here and in (1) and (2). that the system Allxl = bl is 

consistent. 

The terminology “constrained medians” is natural in the light of the 

absolute value in the functional of (4); for any random variable with a 

f,inite expectation, the median is the center about which the first absolute 
,,I’ .’ 
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moment is minimized. 

Wets, in [Z] and [33, studied the special case of (1) in which 

A22 = (I. -I), and (for unfathomable reasons) called this the “complete” 

problem. But he did not observe the connection with “constrained medians. It 

We summarize in Theorem 1 below the relationship between the two problems; 

for reference we set forth the “complete problem” as: 

(5) minimize ‘1x1 t E [c2yt(b2) t c,y-(b2)] 

subject to AllXl = bl 

Azlxl + 1 y+(b,) - I y-(b2) = b2 w.p.l 

x1 2 0 

y+(b2),y-(b2) 2 0 w.p.l 

It is assumed in (5) that c2 t c3 > 0 and, of course, that Allxl = bl is 

consistent. 

Theorem 1: Any “complete problem” (5) can be represented as an equivalent 

“constrained median” problem (4), and conversely. 

Proof: Set 01 = $ (c2 t c3) and c = cl - $ (c2 - c3) A21. Then since 

c2y+ t c3y- = $ k2 + c3) (Y+ + y-j - $ k2 - c,)(Y- - y’) , using the 

constraints in (5) we obtain 

clxltE[c2y++c3y-] = aE[y+ty-]tcxl+ $ (c2 - c3) Eb2 . 

Also, since c2 t c3 > 0 an optimal solution must clearly have y’y- =o 

so that yf(b2) + y- (b2) = lb2 - A21xl) at an optimum. Thus the functional 

in (5) becomes (dropping the constant term) cxl t N E lb2 - A21xl) , as 

asserted. 

Conversely, taking c2 = c3 = c( and cl = c, (4) leads immediately to (5). 

This completes the proof. 
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Having established Theorem 1, one may legitimately inquire as to how 

much more general than the constrained median problem the general 

1. p. u. u. problem (1) is. We shall show as a preliminary result in this 

direction that under very mild conditions on the distribution of b2 the con- 

sistency assumption in (1) implies that the matrix A22 has a right inverse 

and therefore full row rank. 

Theorem 2: Let (1) satisfy the consistency assumption. If the domain Do 

contains 2m (where m is the number of entries in b2) points 

{b(k), b(k): k=l,. . . ,niJ such that, for each k. i(k) = b(k) t Ak ek for 2 2 
some real A k $ 0 (in which e k is the k-th unit vector), then A22 has a 

right inverse. 

Proof: Let A be the diagonal matrix formed by the Ak values ,and let 

xl be any solution to Allxl = bl, xl 2 0 . Since there exists a feasible 

04 (k) .. (k) rule x2(b2) , we have b - A22x2(b2 ) = Allxl = b - A22x2(b A(k)) for 

all k. Letting H be the matrix whose k-th column is x2(b (k))_ qg (k)), 

subtraction yields the relation 

A - AZ2 H = 0. 

But since Ak + 0, A-1 -1 exists: thus A22H A =I, sothat 

H A -’ is a right inverse for A22 which completes the proof. 

It should be noted that Theorem 2 has an obvious generalization to the 

n-stage problem of linear programming under uncertainty. 

Existence Theorems 

In [5], Williams (with no acknowledgement of [l] or [7] ) studied 

existence questions for the simple case All = 0, bI = 0, A22 = (I, -1) , with 

special assumptions on the distribution of b2, by means of fixed-point 

methods; the results obtained there are special cases of those we shall 

give here. Further, we shall give , in our generality, an explicit - 

characterization of what Williams termed the “insoluble finite” case, in which 
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the objective function has a  finite irfinnm but where there is no finite point at -~.. 

which the infimum is attained. 

W e  proceed to establish necessary and sufficient condit ions for the 

objective function in the constrained median problem (4) to have a  finite 

infirnum. For notational convenience we shall drop the subscript and use 

x in place of xl, and will let h(x) = cx t c! E lb2 - AZlx] . 

W e  shall assume that b2 has a  finite expectation; the reason for this 

is expressed as Lemma L 

Lemma 1: h(x) is finite for each x if and only if E !b2 I is finite. 

Proof: Elementary inequalities on the absolute value yield the facts that 

*‘AZlxlj!b2)~ !IAZ1xI - lb2115 /b2.AA2xlS lb21+ !Azlx). 

Applying the expectation operator (which is order-preserving), we 

obtain 

(6) (cxk?!A21x!) ; o?E!b2]sh(x)C(cxt qtA21x!)t oElb2) 

which establishes both sufficiency and necessity, 

Theorem 3: There is a  finite infimum z for h(x) over the set 

R = [x:A1lx = bl, x  2  0) if and only if there exist vectors w and v satisfying 

(7) - wAZl t vAll s  c  

Iwl~a. 

Proof: By virtue of inequality (6), it is enough to show that cx t @ jAzlx! has 

a  finite m inimum. for all x  in the set R if and only if there exist vectors 



-9- 

w and v satisfying the system (7). To do this, we note that the problem 

(8) minimize cx + vx !Aglx! 

subject to AR” = bl 

x20 

can be rewritten equivalently as the consistent linear programming problem 

(9) minimize cx + tx (y+ + Ye ) 

subject to All” = bl 

Y+ - Y- -AZ1x q 0 
t 

x: Y I Y -20 . 

The dual to (9) has as its objective function maximization of the 

functional vbl; more importantly, the dual constraint set is exactly the 

system (7). Since we have assumed that the constraint set of (7) is consistent, 

the dual theorem of linear programming (see [14], vol. I, p. 190) immediately 

yields the desired result. 

We now turn to an elucidation, in all generality, of what was termed 

in the special case of [S] the “insoluble finite” case. We assume the feasible 

region R is nonempty, h(x) has a finite infimum over R, and yet there is 

no finite x which yields this i&mum. Since h(x) is clearly continuous, the 

only way this can happen is for there to exist a sequence (x”) of points in R , 

with l[x”IJ -m as n-m, such that 

lim h(xn) = inf h(x) = ‘i; . 
n-m xcR 
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It is clear that this case need never occur in practice since the 

set R can always be regularized by adjoining the constraint ZX. 5 U , 
3 J 

where U is some large (possibly non-Archimedean) upper bound. 

We will now show that there exist vectors 2, x0 such that 

lim h(tG t x0) = lim h(xn) 
t-m n-+ar 

= $zR h(x) = % , 

where [lx” II - ~1 as n + m and x” e R for all n That is, there exists a 

displaced ray t; + x o contained in R along which the limiting behavior of 

h(tg t x0) as t become infinite imitates the limiting behavior of h(x”) as 

n becomes infinite. 

We shall prove the following theorem via a sequence of lemmas; for 

notational simplicity we drop the subscripts and write A in place of A21 

henceforth. 

Theorem 4: Let {x”: x” CR, n = 1,Z , . . . 3 be a sequence such that 

lim h(xn) =xpR h(x) = i; , and suppose that h(x) > 5 for all x e R . Then 
nd- 
there exist vectors & and x0 such that 

lim h(& t x0) = lim h(x”) = inf h(x) = ‘i; . Furthermore, 
t+- n-r- xeR 

c? t ct /A; ! = 0 , and xoeR and &txoeR forall t?O . 

Lemma 2: Let P be an m x k matrix and let Pt , PO be m-vectors for 

n=l,2,... such that Pz -PO. If the systems PX” = Pz , Xn 2 0 all have 

solutions, then there is a solution A to PA = Po with X 2 0 . 

Proof: Suppose no such h exists, Then by the Farkas lemma there is an 

m-vector u such that up0 C 0 while UP 1: 0 . But for all n, 
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0 5 (uP)xn = u(Ph”) = UP:: . This is impossible since uPi --L up0 < 0 , 

proving the lemma. 

Lemma 3: Let Jo q t j : x7 is bounded for all n] . There is a subsequence 

of {x”] which we shall also denote by [x”) such that x7 - xl for some 
J 

ntl Zj Z 0 for all j in Jo and having x. 
J 

> xy for all j not in J . Further, 0 

the subsequence is such that the sign pattern of the a’x” does not change with 

xl. 

Proof: The proof is trivial since the vectors x” have only finitely many 

components. Henceforth we assume (x”‘J itself has the properties attributed 

to the subsequence: this causes no loss of generality. 

Lemma 4: Define vectors Zn and Z as follows: Let 2” have entries 

xr for j 4 J 0 and zeros elsewhere; let 5 have entries Gj for j E Jo and 

zeros elsewhere. Let 8 i = sgn a’x” . Then 
i-n - cxntrwlAxn) -~(%~tx)-Cq~s~a (x tx) 40 . 

i 
Proof: xn - Zn - x 4 0 by construction, so that 

in ax -ai(gntZ) n 40 and cx -c(x -,t, -0. Also 

sgn ai (P t G) = si if alxn + 0, and if alxn 4 0 then 

a1 (Zn tG) -) 0 as well. The result follows. 

Proof of Theorem: Without loss of generality, we can take as (x”] not only 

the subsequence obtained in Lemma 3, but may replace this by a further 

subsequence having the property that cxn t c1 /Ax” 1 converges to some 

limit which we denote by a. (Th’ 1s is true since cx” t 01 jAxnI must stay 

bounded by virtue of inequality (3)). . 

In addition, we may assume that either ja’x” 1 in d-or ax 

converges to some finite limit, say ;ii : let I o= {i:aixn-o;ii). 

NOW for the sequence Zn defined in Lemma 4, 
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i-n ax -+fm according as a’xn does, and a? -. zi - aiz when 
in - ax l. - d. Finally, &in t N !A?/ 4 a - C aisiaiZ , 

i 
where a is as defined above. 

Let us now apply Lemma 2 to the following system, where ej 

denotes the j-th unit vector: 

(10) C at A. q Tii - a% , 

j4Jo' ' 

Cs.aih - Anti=1 
j & Jo lj j 

C 
j 4Jo 

(cjtZo. s a?)Aj =a-C&!,srar~ 
r rrJ r 

i e1 0 

i 41, 

C -‘jlej) Aj 

j dJo 
= d -All: 

A nti ' AjzO. 

Lemma 2 guarantees from the behavior of the gn that there is a 

solution x” to this system. Let us now define Zj = cj for j 4 Jo and 

Zj=O for jsJo wn in order to obtain a vector ;i having x - j; 2 0 for n 

sufficiently large: in fact x -n- x” -)m for jgJ,. The x0 promised in the 

statement of the theorem can now be defined as x 0 = J? t G. 

hJow by construction of j; (via (7)), the vectors gn- x” are all 

nonnegative and satisfy ai (Zn- Z) i ,n - 0 for i s I, , sia (x - Z) -- for 

idI , and c(En i ..n - 2:) t C aisia (x - j;) 4 0 . We can therefore apply 

Lemma 2 a second time ti guarantee the existence of a solution i to the 

system: 
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(11) C atA. =d , 
,j 8 Jo ’ ’ 

C siai Aj - An+i = 1 , 
j 8J, 
C (cj t Crrrsrar)Aj = 0 

j 8J, 

j fJAllej)Aj =. 0 
0 

Ajr Anti 20 . 

i G I, 

i 4 IO 

Let us define the vector 2 by setting 2;. = cj for j (t Jo and Gj = 0 for 
3 

j sJO . The vector < thus defined has the properties that ai;= 0 for 

i &I o , siaiX > 1 for i 4 I, , andthat &tar/&l =c~tt:crisiai~=O 
i 

as asserted by the theorem; also Al12 = 0 so thatAll&+ xo)~Allxo = d for 

each t 5 0. 

We can also conclude from this construction that 
i* a1 (& t x0 ) = a’x, = iii for i “1, ; sia’ (& t x0) = trp x t sialxo 

which tends to infinity with t for i 4 I, ; and 

c(& t x0) t 01 IA(& t x0) 1 = t(c$ t XaisiaiG) t cxo t G cvisialxo = cxo t 
i 

Caisialx = 0 a for t sufficiently large to stabilize the sign pattern. 
i 

The proof is now finished as an easy consequence of the following 

theorem which serves to establish that tlFm h(& t x0) = lim h(xn) = 5 . 
n -)= 

Theorem c,i lim h(xn) = lim [cxn t 
n-m n-a 

i fI>si (aixn - Ebi)] + 

C aiE)b. - zi[ . 
i c IO 1 
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bi 2 alxn for i 4 I, and all n. 

=E[(bi- aixn)(l - xin(bi))l + 

E [(aixn - bi) x@i’l 

= [Ebi - 2E (bixin(bi))] t aixn [P(bi < aixn) - P(bi ’ 2 alxn)] . 

But lim E(bixin(bi)) = 
nh m 

and the second term on 

the right gets as close as desired to sia’xn for n sufficiently large. 

Thus lim E lb. - a ixn 1 = si(aixn - Ebi) for i 4 I, 
n -+m 1 ; for i “1, we 

have lim a’x” = ;ii , so that for such i, 
n-r* 

nlFm E]bi-aixn/ =Elbi-zi/ . 

This proves theorem 5. 

It should be emphasized that theorem 5 provides an explicit 

characterization of the limiting value of h(x”). We can also use theorem 5 

to obtain the following result which further delimits those 4 which might 

be eligible in theorem 4. 

Theorem 6: A necessary and sufficient condition that 

lim h(tx t x0) = tigoh(tx t x0) is that cx t cz/Axl = 0 . 
t -lm 

Proof: A s sume II x/J = 1 since the conclusion is trivial for x = 0 and 

cx t CYIAX I is positive homogeneous. Theorem 5 and the fact that E !b 1 is 

finite imply that tl:mm h(tx t x0) exists and is finite (call the limit y ) if and 

onlyif cx+o!IAx! =O. Now necessity is obvious from theorem 5; to prove 

sufficiency, let cx t Q !Ax I = 0, and suppose there is a t such that 0 
inf h(tx t x0) = h(tox t x0). Since h(tx t x0) is a convex function of t, 

t 20 

h( i [tax t x0] t 4 [tx t x0] ) 5 $ [ h(tox t x0) t h(tx t x0) ] for every t. 

But lim h(tx t x0) = y = lim h( i tax t $x t x0) , so that 
t -)m t -+m 
1 y 5 z h(t,x t x0, t $YS or y 5 h(tox t x0). Since h(tox t x0) S y by 
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definition of to, we have shown 

inf h(ix t x0) = h(tox t x0) = y = lim h(tx t x0 ) when to exists; if 
t20 t -+m 

there is no such to then a fortiori inf h(tx t x0) = lim h(tx t x0) . 
tzo t-m 

As prelude to a final result in this direction we note that, since h(x) is 

convex, it has partial derivatives almost everywhere. It is of interest to 

establish asymptotic formulae for the radial directional derivative. 

Lemma : ti$dth(tx)=cxtaIAxj 
h(t2x) - h(yd 

Proof: Consider numbers 0 Ctl <t2 <t3. Let A1 = and 

htt3x) - W2x) 
t2 - tl 

A2 = t3 - t2 - 

Since h is convex, it follows easily if d$ h(tx) exists at t = t2 that 

A1 5 dt h(t2x) 5 A2. However, if we let tl, t2, t3 - ~0 in such a way that 

t2 - tl and t3 - t2 stay constant, it is immediate from (13) below that Aland A2 

both approach the limit cx t o /Ax j . The conclusion follows. 

We wish to emphasize at this point that this “knife-edge” infinite 

displaced ray case can never appear as the solution to a practical problem. 

Rather it would exhibit an inadequacy or unrealistic formulation of the 

model. We have developed these results solely for the sake of completeness 

of analysis, 
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Probabilistic Interpretations and Incremental Formulae for h(x) 

We now give expressions in terms of the probabilities of the 

various b versus Ax events for the increment of h(x) (i. e. 

htx + S 1 - h(x)). 

First, on inspecting figure 1 below, we note that, for E > 0, 
u<a 

f(u) = Iu - (ate)/ - Iu-al q cZZ(a-u) , 

c , 

a5uCatE 
-E u2ats . 

I --u 
a a+E 

-cr.-------- 

l Figure 1 

Thus, if u is a random variable with finite expectation, 

E, (1~ - (a t E ) 1 - (u - aj)=s[P(u<a)-P(uzate)]t 

[C t 2a -2(a+Ee(E))]P(a~U<a+E) 

for some 0 5 g( E ) C 1 by the mean value theorem. In other words, 

(12 ) Eu t b -(ate)/- ju-aj)=E[P(u<a+s)-P(u5a+s) 

-2g(~)P(a~u<a+E)]. 

But 

h(xtE)-h(x)=cEtaE(Jb-Ax-A<!- (b-Ax\) , 

SO if we use (12) we get, using P(b 2 Ax) to denote the vector whose 
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components are P(bi 2 a’x). where a1 is the i-th row of the matrix A: 

(13 1 h(xtE)-h(x)scEtryD(Ae)[P(bCA(xtF))-P(brA(xt<)) 

-ZD(B(/A~I))P(AxCbcA(xtE)]. 

Here D(y) denotes the diagonal matrix whose diagonal consists of the 

components of the vector y and 6( IA 51) = (6,( ia’? /), . . . , ern( larnE 1)) 

with 0 5 6,( !ai E I ) 5 I. Thus we have an expression for the increment 

of h(x), and thereby an expression for any possible directional variation, 

in terms of the probabilities of various events. 

Theorem 6 : If the joint distribution function for b is continuous, the 

function h(x) is continuously differentiable. The gradient of h(x) is 

represented explicitly as: 

(14) V h(x) = c t w(x) A, where 

wi (x) = mi [2Fi(aix) - l] 

Proof: In (13), let 5 = tej where t is real and e. is the j-th unit 
I 

vector. The j-th component of v h(x) is then obtained as 

lim 
t -+o 

h(x t tej) - h(x) 

t 
= cj t C "pi [2Fi(aix) - 11. 

i 

This is the desired representation. 

Corollary: If the distribution of b admits a continuous density function, 

or equivalently, if the distribution function is continuously differentiable, 

then the Hessian (the matrix of second partial derivatives) of h(x) exists 

and is continuous. The jk-th entry is represented explicitly as 
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(15) 2 C 01. at a* f. (a*x) iiJkr , 

where fi is the marginal density of bi . 

It is possible to employ (13), (14) and (15) constructively to obtain 

efficient solution algorithms for the problem (4) and thereby for (5), We 

remark also that (14) is easily derived from the work in [2] and [5]. It 

is important to note, however, that (13) is valid for the general cases of 

discontinuous distributions. This result will be applied in further work 

elsewhere, 

A major difficulty in applying existing nonlinear programming 

techniques to (4) directly is that multiple numerical integrations are re- 

quired.to calculate the value of h(x) for any particular X. A notable 

exception is the projected gradient method of J. B. Rosen (see [2O])which 

requires only knowledge of the gradient at each step. Another possibility, 

suggested during a conversation by A. V. Fiacco in regard’to the SUMT 

and related sequential unconstrained methods (see [21], [ZZ 3, [23]),is 

that of performing either first-order or second-order gradient descent 

procedures (for a suitable unconstrained penalty function) only by refar- 

eflce to the gradient and inverted Hessian and not to the objective function 

value. Optimal step lengths for each (possibly mapped) gradient move can 

be calculated not only by explicitly minimizing the objective function along 

the desired vector, but rather by requiring that successive umovest’ be ,~ 

orthogonal Such a procedure appears to be novel, and will be reported .~. 

on in more detail and with greater generality elsewhere, 

Solvability Results for the General Problem. 

The general N-stage linear programming under uncertainty 
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problem (cf. [I], [6], [7], [ll], [16]) can be written: 

(16) 
N 

minimize clxl t E ( C cjxj (b2,. . . , bj)) 
j=2 

subject to Ail xl t ;: Aij xj (b2,. . . ,bj) = bi, i=l, . . . , N 
j=2 

x 20, 1 xj (b2,. . . , bj) 2 0, j=2,...,N 

In (16) the vectors bl, cl,. . . , c and the matrices A.. are n 1.l 
known constants; b2,. . . , bN are random vectors with a known joint dis- 

tribution; and the decision rule xj, for each j, is to be a function only of 

the random variables up to “stage” j, or equivalently is to be a constant 

function of b. 
3+1 

through bN. The constraints which involve random 

variables are required to hold with probability one; we assume that the 

structure of the problem is such that, for 2 x1,. . . ,x. 
J 

satisfying the 

first j constraints in (16), there exists a decision rule x jtl(b2t. . . e bjtl) 

satisfying the (jtl)- st constraint (and the nonnegativity restrictions) with 

probability one. We shall refer to this as the “consistency assumption. ” 

We must specify the domain of definition of the functions xj ; again 

following [3], we suppose that this domain D 0 is the convex hull of those 

subsets of E N which have positive probability under the distribution of 

the b.. I 
We note again here that the consistency assumption implies that 

the matrices Aii all have full row rank when the conditions of theorem 2 

hold. 

In [27] and [28], Wets established that there exists a convex pro- 

gramming problem which is a deterministic equivalent for the N-stage 

problem (in which the solution set for xl is a convex polyhedron); this 
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result (obvious from (2) for N = 2) was extended by Murty in [IO] where he 

showed that the nonsero components of an optimal xl correspond to 

linearly independent columns of the matrix i \ 
ell . . 

Elaborate constructions, including the theory of polar cones, were 

used to obtain these results; we now show how they follow in a trivial 

manner simply by looking at (13) from a new point of view. 

Theorem 7: If there exist any optimal decision rules XT,. . . ,xG 

whatever for the N-stage problem (16). then there exists an optimal xl 

whose nonzero components correspond to linearly independent columns 

of the matrix A11 . . 

( ) 

. 

‘nl 
Proof: Consider the optimal rules xy (b2,. . . , bj) for j = 2,. . . ,n. Since 

there exists an x;” such that 

N 
A x”=b.- ill 1 C Aijxj" (b2,.. . , bj) for i = 1,. . V ,N, and since 

j=2 
x8 is a constant, the right-hand expressions must also be constant 1 
functions of the random variables involved! Denote the vector of these 

constants by d*. and consider the linear programming problem (which 

has a finite optimal value) given by: 

(17) minimize ~1x1 

Ail”1 = d” , 

x120 . 

i =l,...,N, 

In (17), of course, d: = bl . Now there exists an optimal solution xl 

to (17) which is a basic solution, i. e . , whose nonzero components 

correspond to linearly independent columns of the constraint system, 
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Also, (21, x;, . . . , xg ) constitute an optimal solution to (16). To see this, 

note that the difference between the functional values in (16) given by this 

solution and the original solution (xl*, . . . ,xG ) is - “lx1 - clxT. Since 

the original solution is optimal for (16) we have clzl - clxT Z 0, and since 

‘;; 1 is optimal for (17) we know that cl:1 5 clxl*; this completes the proof. 

It may be possible to use the above observations as the basis for 

an efficient algorithm for (l), the reason being that in order to find dg it 

is not necessary to know the entire function xg (b2); d$ = b2 - AZ2xl (b2) 

is known as soon as we know xz for a single value of b2. This approach 

will be particularly powerful if efficient methods can be found for determin- 

ing g (b2) for some b2 , either explicitly or by means of approximations. 
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Appendix 

We state here without proof (proofs may be found in [14]) three 

theorems which are of key importance in the theory of linear programming. 

Our lemma 2 is a restatement of part of the Farkas-Minkowski theorem 

in its homogeneous form; the key fact used in our proof of theorem 5 

was the LIEP theorem. The Opposite Sign theorem is the heart of the 

proof of the Farkas-Minkowski theorem , and provides the theoretical 

basis for computational procedures for constructing basic solutions from 

nonbasic ones while not worsening the objective function value ; see [24]. 

It should be noted that all theorems may be proved without 

recourse to topological properties of the real numbers and are thus valid 

for vector spaces over arbitrary ordered fields. 

A. Farkas-Minkowski Theorem: The intersection of a finite number of 

(possibly displaced) half-spaces, when a bounded set, is the convex 

hull of a finite number of extreme points. 

Let L ={A : PA = PO, X 2 01; here and in the following let X and (y 

be n-vectors, P be m-by-n, and PO be an m-vector. L is thus 

a polyhedral convex set. 

B. LIEP Theorem (Linear Independence by Association with Extreme 

Points): X $ 0 is an extreme point of L if and only if the nonzero 

coordinates (components) of A correspond to linearly independent 

columns of P. 

C. Opposite Sign Theorem: L is spanned by its extreme points if and 

only if for every o( $ 0 such that Plu = 0 it is necessary that one 

component of (Y be positive and that another component be negative. 

We remark here that the Opposite Sign Theorem is also true in cer- 

tain infinite-dimensional cases (specifically, in “generalized finite 
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